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Quantum Mechanics from Symmetry and
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Quantum theory is derived from a set of plausible assumptions related to the
following general setting: For a given system there is a set of experiments that
can be performed, and for each such experiment an ordinary statistical model is
defined. The parameters of the single experiments are functions of a
hyperparameter which defines the state of the system. There is a symmetry group
acting on the hyperparameters, and for the induced action on the parameters of
the single experiment a simple consistency property is assumed, called
permissibility of the parametric function. The other assumptions needed are
rather weak. The derivation relies partly on quantum logic, partly on a group
representation of the hyperparameter group, where the invariant spaces are shown
to be in 1±1 correspondence with the equivalence classes of permissible parametric
functions. Planck’ s constant only plays a role connected to generators of unitary
group representations.

1. INTRODUCTION

The two great revolutions in physics at the beginning of this centuryÐ
relativity and quantum mechanicsÐ still influence nearly all aspects of theo-
retical physics. Similar as they may be, both in their impact on modern

science and in the way they in their time turned conventional ideas upside

down, there are also of course great differencesÐ both in origin, appearance,

and type of content. Relativity theory was founded by one man, Einstein,

while the ideas of quantum theory developed over time through the work of

many people, most notably Planck, Bohr, SchroÈ dinger, Heisenberg, Pauli, and
Dirac. An equally importantÐ and perhaps relatedÐ aspect is the following:

Relativity theory can be developed logically from a few intuitively clear,

nearly obvious concepts and axioms, essentially only constancy of the speed
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of light and invariance of physical laws under change of coordinate system,

while quantum theory still has a rather awkward foundation in its abstract

concepts for states and observables.
Over the years, several attempts to provide a deeper foundation for

quantum theory have been made; some of these we will return to later.

Although there is far from a universal agreement on the foundation, today’ s

physicists, both theoretical and experimental, have developed a clear intuition

directly connected to states of a system as rays in a complex Hilbert space

and observables as self-adjoint operators in the same space. The theory has
had success in very many fieldsÐ some claim that quantum theory is the

most successful physical theory ever advanced, but it has also met problems:

difficulties with defining the border between object and observer in von

Neuman’ s quantum measurement theory; difficulties with interpretations

requiring many worlds or action at a distance; infinities in quantum field

theory requiring complicated renormalization programs; difficulties in recon-
ciling the theory with general relativity and so on. We will of course not try

to attack all these problems here. What we will assert, though, is that the fact

that such difficulties occur does make it legitimate to look at the foundation of

the theory with fresh eyes. One way to do this is to try to find a foundation

which is in accordance with common sense. Another way is to compare it
with another, apparently unrelated, theoretical area. In this paper we will try

to combine both these lines of attack.

A vital clue is the role of probability in quantum theory. In the beginning,

this was an aspect that overshadowed all other difficulties in the theory, and

that made leading physicistsÐ first of them Einstein himselfÐ skeptical: The

new physical laws were then and are still claimed to be probabilistic by
necessity. Still some people are looking at hidden variable theories in attempts

to avoid the fact that the fundamental laws of nature are stochastic, but after

the experiments of Aspect et al. (1982) and other overwhelming evidence,

most scientists seem to accept stochasticity of nature as an established fact.

At the same time, statistical science has developed methodology that

has found applications in an increasing number of empirical sciences, method-
ology largely based upon stochastic modeling. With this background, the

obvious, but apparently very difficult question then is: Why has there been

virtually no scientific contact between physicists and statisticians throughout

this century? This lack of contact is in fact very striking. At the same time

as Dirac was developing a foundation for relativistic quantum theory in

Cambridge in England, R. A. Fisher completely independently developed the
foundation of statistical inference theory based upon probability models in

Rothamsted and London. While modern quantum field theory was being

developed by Feynman in Princeton and Schwinger in Harvard, J. Neyman

and coworkers were laying the foundation of modern statistical inference
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theory in Berkeley. One of the few early contacts that I know of is Feynman’ s

(1951) Berkeley Symposium paper on the interpretation of probabilities in

quantum mechanics. Today, quantum theory sometimes has its own session

at large international statistical conferences, but the language spoken there

is of a nature which is difficult to understand for ordinary statisticians. Meyer’ s

(1993) book on noncommutative probability theory may be seen as an attempt

to make a synthesis of the two worlds, but this book does not address the

foundation question, at least if we seek a foundation related to common

sense. It is also becoming increasingly apparent that there are similarities

between advanced probability theory and quantum theory, but these similarit-

ies seem to be mostly at the formal level.

The lack of a common ground for modern physics and statistics is even

more surprising when we know that the outcome of any single experiment

with fixed experimental arrangement can always be described by ordinary

probability models, also in the world of particle physics. It is in cases where

several arrangements are possible, as when one has the choice between

measuring the position and momentum of a particle, that quantum mechanics

gives results which cannot be reached by ordinary probability theory. In

addition, quantum theory gives definite rules for computing probabilities,

also in cases where the ordinary probability concept can be used in principle.

We will formulate below an extended experimental setting which

includes the possible decisions which must be made before the experiment

itself is carried out, at least before the final inference is made. We will look

at the situation where strong symmetries exist both within single experiments

and in the wider experimental setting between single experiments. This,

together with other reasonable assumptions, will lead to probability models

of the type found in ordinary quantum mechanics.

The physical implications of this theory, at least in its nonrelativistic

variant, are not expected to differ considerably from existing quantum theory;

basic mathematical equivalence will be discussed later. Our main contribution

here is to propose a simpler and more intuitive foundation. The really interest-

ing further challenge seems to be the question of finding a corresponding

relativistic theory. This issue will not be pursued here, but in light of the

importance of symmetry groups in high-energy physics, it seems very plausi-

ble that it should be possible to develop the approach in this direction, too.

A brief discussion on this will be given in the last section.

Our aim is to write the paper in such a way that the main principles

can be appreciated by theoretical physicists, mathematicians, and statisticians.

Technical details at several points are unavoidable, however. Also, even

though we will try to be fairly precise, at least in the main results, there may

still be room for improvement in mathematical rigor. What we feel are the
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most important assumptions are stated explicitly. Minor technical assumptions

are stated in the text.

2. EXPERIMENTAL SETTING

The common statistical framework for analyzing an experiment is a

sample space -, listing the possible experimental outcomes, a fixed s -algebra

(Boolean algebra) ^ of subsets of -, and a class {P u ; u P Q } of probability
measures on the measurable space (-, ^). The parameter u Ð or a function

of this parameterÐ is ordinarily the unknown quantity which the statistician

aims at saying something about using the outcome of the experiment. A fixed

u , or alternatively, a probability distribution expressing prior knowledge about

u , may also be related to the physicist’ s concept of `state.’ A simple purpose

of a statistical experiment might be to estimate u , which formally means to
select a function u Ãon the sample space - such that u Ã(x) is a reasonable

estimate of u when the observation x is given. There is a considerable literature

on statistical inference; three good and thorough books with different perspec-

tives are Berger (1985), Lehmann (1983), and Cox and Hinkley (1974). Both

at the more specialized and at the more elementary level there are very many
books, of course. An important point is that intuition related to statistical

methodology in this ordinary sense has been developed in a large number

of empirical sciences, also in parts of experimental physics.

A very general approach to statistics assumes a decision-theoretic frame-

work: First, a space D of possible decisions is defined, given the experimental

outcome; for instance, D can consist of different estimators of u . Then a loss
function L( u , d( ? )) is specified, giving the loss by taking the decision d when

the true parameter is u . The choice of decision is typically done by minimizing

the expected loss. By restricting the class of decision functions so that they

posess invariance properties, or so that estimators have the correct expectation,

this can often be done uniformly over the unknown parameter. Another

possible courseÐ gaining increasing popularityÐ is to assume a prior proba-
bility distribution over the parameter space, and then base inference on

the corresponding posterior distribution, given the data. This is called the

Bayesian approach.

Essential for what follows is that we will extend the traditional statistical

framework to include possible actions taken by an experimenter before or

during a given experiment. The most important actions for our purposes are
those that label the whole experiment and thus allow different experiments

to be done in the same situation. However, we will also allow actions that

change the class of probability measures, the space of decisions, and/or the

loss function.
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Thus we start with a space ! of possible actions, and for each a P !
we have an experiment %a , consisting of a probability model

(-a , ^a , {Pa
u ; u P Q a}), and possibly a loss function La ( ? , ? ) and a space

Da of potential decisions. In macroscopic experiments such actions are in

fact very common. They are not usually explicitly taken into account in the

statistical analysis, but are taken as fixed once and for all, an attitude which

is fairly obvious in some cases, but absolutely can be discussed in other

cases. In fact, more can be said, also in the ordinary statistical setting, for a

closer link between the experimental design phase (choosing a) and the
statistical analysis phase. A partial list of possibilities for choosing a include

the following:

(a) Choice between a number of essentially different experiments that

are possible to perform in a given situation.

(b) Choice of target population, and way to select experimental units,

including choice of randomization. Choice of conditioning in models is related
to these issues.

(c) Choice of treatments. There are many variants: There are lots of

examples of medical treatments which are mutually exclusive. In factorial

experiments the choice of factors and the levels of these are important issues.

(d) A choice between different statistical models; for instance, one may
want to reduce the number of parameters if the model is too complicated to

give firm decisions. In fact, this is permissible under certain conditions.

(e) Factorial experiments often turn out to be unbalanced, more specifi-

cally, nonorthogonal : If nij denotes the number of experimental units having

level i if factor I and level j of factor J, then the statistical analysis is simple

only if nij 5 ni. n.i/n.., where the dots denote summation. If this is not the
case, the experiment is said to be nonorthogona l. Then the statistical test for

equal effects of the levels of factor I depends on whether or not factor J is

included in the model. So in this sense the consecutive order of the factors

influences the conclusion; hence this must be decided upon. Simpson’ s famous

paradox [see Gudder (1988) for references and for a discussion from the

point of view of quantum theory] is a different, but related issue. Even
though factorial experiments with many factors used on the same unitsÐ if

possibleÐ are known both from experience and from statistical theory to be

very efficient, the theoretical discussion in the present paper is more related

to the situation where one uses one or a few factors at a time and performs

consecutive experiments.

The main purpose of this paper will be to explore the relationship
between macroscopic statistical modeling and the microscopic modeling we

find in the quantum mechanical world. In the latter one definitively has the

choice between performing different experiments, say, measuring position or

momentum or measuring spin in different directions. The quantum mechanical
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state of a particle or a particle system can be used to predict the outcome of

any given one of these experiments once the choice is made. In this way one

might say that the quantum mechanical state vector contains the simultaneous
model of a large set of possible statistical experiments %a (a P !). A major

reason why this is possible is that the situation contains a high degree of

symmetry. To study the connection between quantum mechanics and statistics

more directly, it turns out, however, to be useful first to consider a simpler

representation than the ordinary Hilbert space representation of quantum

mechanics.

3. THE LATTICE APPROACH TO QUANTUM THEORY

Mathematically, a s -lattice is defined as a partially ordered set + such

that the infimum and supremum (with respect to the given ordering) of every

countable subset exist and belong to +. In this section we will summarize
the approach to quantum mechanics taking lattices of propositions as points

of departure. These can be looked upon as generalizations of the s -algebras

of classical probability, where the propositions are subsets of a given space

-, ordered by set inclusion; the term Boolean algebra is sometimes used for

the same concept. For Boolean algebras, the partial ordering corresponds to
set inclusion, and infimum and supremum correspond to intersection and

union, respectively. In the following we will mainly consider (complete)

lattices, where the infimum and supremum of all subsets, not only the count-

able ones, exist.

The lattice approach to quantum mechanics consists in formulating a

number of axioms for a lattice which is weaker than the set of axioms needed
to define a Boolean algebra, just sufficiently weak that they are satisfied by

the set of projections in a Hilbert space, which are the entities that represent

propositions in conventional quantum mechanics. We will follow largely

Beltrametti and Cassinelli (1981) in presenting these axioms. It is relatively

easy to prove that the axioms below actually are satisfied by Hilbert space

projections, much more difficult to show that the axioms by necessity imply
that the lattice has a Hilbert space representation. We proceed with the

necessary definitions; in the next section we will try to relate these definitions

to sets of potential experiments as formulated above.

We have already defined a lattice + as a set of propositions {3} with

a partial ordering # such that the supremum Ú i 3i exists and belongs to +
when all the 3i belong to +, similarly for infimum. ( Ú i 3i is defined as a
proposition 3 such that 3i # 3 for all 3i , and such that 3i # 30 for all

3i implies 3 # 30. It is easy to show that the supremum, if it exists, is

unique if the lattice is assumed to have the property that 31 # 32 and 32 #
31 implies 31 5 32. Infimum is defined correspondingly.)
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It follows that + contains the infimum of all propositions, denoted 0,

and the supremum of all propositions, denoted 1.

What corresponds to the complement in a Boolean algebra is here
denoted by orthocomplement. An orthocomplementation in a lattice + is a

mapping 3 ® 3 ’ of + onto itself such that (i) 3 ’ ’ 5 3, (ii) 31 # 32

implies 3 ’
2 le 3 ’

1 , (iii) 3 Ù 3 ’ 5 0, and (iv) 3 Ú 3 ’ 5 1. It is easy to see

that De Morgan’ s laws follow from (ii):

( ~ 3i)
’ 5 ` 3 ’

i , ( ` 3i)
’ 5 ~ 3 ’

i

Two propositions 31 and 32 are said to be disjoint or orthogonal, written

31 ’ 32, when 31 # 3 ’
2 (or, equivalently, when 32 # 3 ’

1 ). A subset of +
formed by pairwise disjoint elements is simply called a disjoint subset. The

lattice + is called separable if every disjoint subset of + is at most countable.

If 31 # 32, we will write 32 2 31 for 32 Ù 3 ’
1 . It is clear that we

then have 32 2 31 ’ 31. A lattice + is called orthomodular if 31 # 32

implies 32 5 31 Ú (32 2 31). Another way to put this is that the distributive

laws hold for the triple (31, 32, 3 ’
1 ) when 31 # 32.

A much stronger requirement is that the distributive laws should hold

for all triples:

31 ~ (32 ` 33) 5 (31 ~ 32) ` (31 ~ 33),

31 ` (32 ~ 33) 5 (31 ` 32) ~ (31 ` 33)

An orthocomplemented distributive lattice is in general a Boolean algebra,

and can always be realized as an algebra of subsets of a fixed set.
The lattices of quantum mechanics are orthocomplemented, but nondis-

tributive; they only satisfy the weaker requirement of being orthomodular.

Much of the pioneering work in the lattice approach to quantum mechanics

is due to Mackey (1963). Two books on orthomodular lattices are Beran (1985)

and Kalmbach (1983). This represents an approach to quantum mechanics that

in some sense is more primitive than most other approaches, but there are
still concepts here, like the lattice property or orthomodularity, which are

difficult to get an intuitive relation to. Our aim here will be to try to understand

these concepts to some extent in terms of ordinary statistical models for a

set of potential experiments and in terms of symmetry properties.

In addition to orthomodularity, two further properties are required by

Beltrametti and Cassinelli (1981): The lattices are assumed to be atomic and
to have the covering property.

A nonzero element 30 of + is called an atom if 0 # 3 # 30 implies

3 5 0 or 3 5 30. The lattice + is called atomic if there always for 3 Þ
0 exists an atom 30 such that 30 # 3. It can be shown that if + is an
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orthomodular, atomic lattice, then every element of + is the union of the

atoms that it contains. If the lattice is separable, this union is at most countable.

We say that + has the covering property if for every 31 in + and every
atom 30 such that 31 Ù 30 5 0, we have that 31 # 32 # 31 Ú 30 implies

either 32 5 31 or 32 5 31 Ú 30.

In total, the kind of propositional structure which is promoted in Beltra-

metti and Cassinelli (1981) as a basis for quantum mechanics is an orthocom-

plemented, orthomodular, separable lattice which is atomic and has the

covering property. All these requirements are proved to hold for the lattice
of projection operators in a separable Hilbert space, or equivalently, the lattice

of all closed subspaces of the Hilbert space.

One can also prove results in the opposite direction, though this is much

more difficult: If the given requirements hold for some lattice, then one can

construct an isomorphic Hilbert space in the sense that the projections upon

subspaces of this Hilbert space are in one-to-one correspondence with the
propositions of the lattice, with corresponding ordering. The proof of this

last result is only hinted at in Beltrametti and Cassinelli (1981); more details

are given in Piron (1976) and in Maeda and Maeda (1970). Related results

can also be found in Varadarajan (1985). One problem is to convince oneself

that the complex number field is the natural one to choose as a basis for the
Hilbert space: One can also construct representations based on the real or

quaternion number field.

Finally, the concept of state in quantum mechanics can be defined as a

probability measure on the propositions of a lattice. In the Hilbert space

representation the famous theorem of Gleason says that all states can be

represented by density operators r [positive operators with trace tr( r ) 5 1]
in the sense that the expectation of every observator, represented by a self-

adjoint operator A, is given by

tr(A r )

As is well known from probability theory, the set of expectations for all

variables determines the set of probability distributions for all variables.

4. A SET OF POTENTIAL STATISTICAL EXPERIMENTS

Let us start by turning to a completely different situation where the

concept of `state’ is also being used. Consider a medical patient. One way

to make precise what is meant by the state of this patient is to contemplate
the potential results of all possible tests that the patient can be exposed to,

where the word `test’ is used in a very wide sense, possibly including treat-

ments or parts of treatments. Thus in a concrete setting like this we can

imagine a large number of potential experiments, some possibly mutually
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exclusive, and let the state be defined abstractly as the totality of probability

distributions of results from these experiments, or some parameter determin-

ing all these probability distributions. A similar concept can be imagined for

a set of several medical patients, where randomization and allocation of

treatment may be included as part of the potential experiments under consider-

ation. Here, the focus may be on the treatments rather than on the patients,

but still the results of the experiments depend upon the state of the patients,

andÐ if we consider a large enough collection of experiments for a large

enough collection of patients in the same stateÐ the potential outcomes may

hopefully determine these states.

In general, now fix some concrete experimental setting, and let ! be a

set of potential experiments, in statistical terminology %a 5 (-a , ^a ,

{Pa
u : u P Q a}) with decision space Da and loss function La( u , d( ? )) for a P !.

For two experiments %a and %a8 it may be crucial whether or not these

can both be performed on the experimental unit(s)Ð say the patientÐ in such

a way that one experiment does not disturb the result of the other. There are

many examples where such disturbance takes place, or where even one

experiment may preclude the other: Biopsy of a possible beginning tumor

may make the evaluation of a simple medical treatment difficult; a psychiatric

patient may be treated by psychopharmica or by classical psychoanalysis,

but the evaluation of both approaches on the same patient may be impossible.

In other settings, say factorial experiments, similar phenomena occur: An

industrial experiment with a fixed set of units may be performed with one

given set of factors or another set, not orthogonal to the first one, but including

both sets will lead to a different experiment. The effect of nitrogen in some

fertilizer may be evaluated in a small, fixed experiment with or without

potassium present, not both.

We will assume that for any pair a and a8 it is always possible to decide

whether or not these experiments can be performed simultaneously without

disturbing each other. If this is the case, we say that the experiments are

compatible. Two compatible experiments can always be joined into a com-

pound experiment by taking the Cartesian product: %a ^ %a8 5
(-a , ^a , {Pa

u ; u P Q a}) ^ (-a8, ^a8, {Pa8
u ; u P Q a8}), similarly for larger

sets of experiments. Sometimes the parameter set for the joint experiment

can be simplified in such cases.

In fact we will assume that all potential experiments that can be per-

formed on a given set of units depend on a common (multidimensional)

parameter f , defined on a space F , and connected to the state of the units.

Later we will show that it may be natural instead to associate the state concept

to a distribution over F , but everything that is said below, in particular the

ordering of propositions, can be repeated with states as probability measures.
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So to keep things reasonably simple, we will keep f fixed in this discussion.

(In fact we will do so until Section 10 below.)

Then u in the experiment %a is a function of the common parameter f ,

say u 5 u a( f ); it is assumed that the parameter spaces F and Q a are equipped

with s -algebras and that each function u 5 u a( f ) is measurable. Furthermore,

it is convenient to assume that each parameter is identifiable: For each a and

pair ( u , u 8), if Pa
u (E ) 5 Pa

u 8, (E ) for all E P ^a , then u 5 u 8.
Since s -algebras may be coarsened (data reduction), there is a natural

partial ordering between the experiments: Say that %a8 # %a if -a8 5 -a and

^a8 # ^a. Then the probability models are assumed to be consistent: Q a8 #
Q a and Pa8

u 5 Pa
u ) ^a8 for u P Q a8. We will let !0 be the extreme set of

experiments on a given set of units, so that for %a with a P !0 there is no

%a8 Þ %a such that %a # %a8.

By a proposition 3 we mean an experiment together with an event from

this experiment: 3 5 (a, Ea), where Ea belongs to the s -algebra ^a.

A partial ordering of the propositions from the same experiment is first

defined as the obvious one: We say that (a, E1a) # (a, E2a) if E1a # E2a.

This ordering will be generalized to some pairs of propositions from differ-

ent experiments:

Definition 1. We say that 31 5 (a1, E1a1) # 32 5 (a2, E2a2) iff

Pa1
u a1( f )(E1a1) # Pa2

u a2( f )(E2a2) for all state parameters f .

In order that 31 # 32 and 32 # 31 together shall imply 31 5 32, we

will here identify 31 and 32 if Pa1
u a1( f ) (E1a1) 5 Pa2

u a2( f )(E2a2) for all f . This

may lead to somewhat unfortunate situations where unrelated propositions

are identified, but mathematically it is convenient. Among other things it is

necessary in order that supremums shall be unique.

This definition includes, but may in certain cases also be an extension

of, the trivial one when the experiments are the same. Other cases where

31 # 32 include (i) E1a1 5 0¤, (ii) E2a2 5 -a2, and (iii) %a1 is the Cartesian

product of %a2 and another compatible experiment %a3, so E1a1 5 E2a2 ^
E3a3.

From (i) and (ii) it follows that we have to identify all propositions of

the form (a, 0¤), which will be collected in the single proposition 0, and the

propositions of the form (a, -a), which will be collected in the single proposi-

tion 1. These will be the infimum and supremum, respectively, of the whole

set of propositions.

The orthocomplement of a proposition is defined in a straightforward

way from the complement of an event: For 3 5 (a, Ea) take 3 ’ 5 (a,

E c
a). It is then clear that 3 ’ ’ 5 3 and that 31 # 32 implies 3 ’

2 # 3 ’
1 .
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From the results of the next section it follows that 3 Ù 3 ’ 5 0 and 3 Ú
3 ’ 5 1. Thus the properties of an orthocomplementation are satisfied.

Sets of propositions from the same experiments will ordinarily have
a natural supremum and infimum, corresponding to the usual unions and

intersections. To introduce supremum and infimum for arbitrary sets of propo-

sitions, however, one needs more structure. We will in fact add more structure

by making symmetry assumptions. But first we will show that the simple

structure of sets of experiments under weak extra assumptions implies that the

set of propositions always will be an orthocomplemented, orthomodular poset.

5. ORTHOMODULAR PROPOSITIONS FROM EXPERIMENTS

We start with an assumption which seems rather weak in the general

setting we are considering, but also as it stands seems difficult to motivate

directly from statistical reasoning. It is closely related to Axiom V in Mackey
(1963), and has been formulated again in several papers in quantum logic.

MaË czynÂski (1973) showed that this assumption is necessary and sufficient in

order that an orthocomplemented poset shall possess some natural properties.

We say that k propositions 31, . . . , 3k with 3i 5 (ai , Ei) are orthogonal
if the inequality

o
k

i 5 1

P ai
u i( f )(Ei) # 1 (1)

holds for all f . We say that these propositions are pairwise orthogonal if
the same inequality holds for any pair chosen from the k propositions. This

is equivalent to 3i # 3 ’
j for all pairs.

It is clear that orthogonality implies pairwise orthogonali ty. The opposite

implication holds for most other orthogonality concepts, but here statistical

examples can easily be constructed for which this does not hold. Such cases

will be explicitly excluded from our sets of propositions (strictly speaking,
we only need this assumption for k 5 3 here).

Assumption 1. For the propositions under consideration, any set of k
pairwise orthogonal propositions is orthogonal.

For events Ei from the same experiment, pairwise orthogonality essen-

tially means Ei ù Ej 5 0¤ for i Þ j. This obviously implies orthogonality in

the sense given by (1). For general sets of propositions, Assumption 1 amounts
in some sense to assuming a certain richness of the set of models.

For the intermediate lemma below, we may also need to extend the set

of experiments under consideration. This can always be done artificially,

since there are no limitations on the set of experiments under consideration,
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in particular, the set of experiments need not be countable. We will see later

how the artificial experiments can be deleted when final results are formulated.

Assumption 2. Let 3i 5 (ai , E i) (i 5 1, . . . , k) be k propositions such

that (1) holds for all f . Then there is an experiment %a8 5
(-a8, ^a, {Pa8

u ; u P Q a8}) and k pairwise disjoint events E 8i in ^a8 such that

Pa8
u 8( f )(E 8i ) 5 Pai

u i( f )(Ei) for all f P F and i 5 1, . . . , k.

In the proof of the lemma below, we will only make use of Assumption
2 for k 5 3, to begin with only for k 5 2.

Lemma 1. Let 31 5 (a1, E1) and 32 5 (a2, E2) be two orthogonal

propositions in the above sense, i.e.,

Pa1
u 1( f )(E1) 1 Pa2

u 2( f )(E2) # 1, " f

Then under Assumptions 1 and 2 there exists a proposition 3 5 (a, E ) on

some experiment %a such that

Pa
u ( f )(E ) 5 Pa1

u 1( f ) (E1) 1 Pa2
u 2( f )(E2) (2)

and we have that 3 5 31 Ú 32 for this choice of 3.

Proof. The existence of 3 follows by first using Assumption 2. This
gives E 81 ù E 82 5 0/ for events E 81 and E 82 in some single experiment. We can

then take E 5 E 81 ø E 82, so that (2) follows.

It is clear that 3 $ 31 and 3 $ 32 for this choice of 3. Assume that 30

is another proposition such that 30 $ 31 and 30 $ 32. Then by Assumption 1

and Assumption 2 with k 5 3 there exists an experiment %a8, and events
E 80, E 92, and E 92 in ^a8 such that E 91 # E 80, E 92 # E 80, and E 91 ù E 92 5 0¤. But

then it follows that E 91 ø E 92 # E 80, Pa0
u 0( f )(E0) $ Pa1

u 1( f )(E1) 1 Pa2
u 2( f )(E2) for

all f , so 3 # 30. Hence 3 5 31 ~ 32.

The basic property of orthomodularity was defined in Section 3 for

lattices. This definition requires only a definition of supremum for pairs of
orthogonal propositions. Here is the necessary reformulation: Say that a set

of propositions is orthomodular if 31 # 32 implies that 32 5 31 ~
(3 ’

2 ~ 31)
’ . The following result must be seen in relation to Lemma 1.

Note that neither Assumption 1 nor Assumption 2 is needed explicitly in

the theorem.

Theorem 1. Assume an orthocomplemented poset of propositions based

on experiments with the property that pairwise suprema exist and satisfy

equation (2) for the pairwise supremum 3 5 (a, E ). Then this poset will

be orthomodular.
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Proof. Let 3i 5 (ai , Ei , (i 5 1, 2) satisfy 31 # 32. Then by assumption,

3 ’
2 ~ 31 is equal to 3 5 (a, E ) such that Pa

u ( f )(E ) 5 1 2 P2
u 2( f )(E2) 1

P1
u 1( f )(E1). By the same assumption 31 ~ 3 ’ is equal to 38 5 (a8, E 8) such

that Pa8
u 8( f )(E 8) 5 P1

u 1( f )(E1) 1 1 2 Pa
u ( f )(E) 5 P2

u 2( f )(E2). Hence 38 5 32, and

the orthomodularity property follows.

The concept of an orthocomplemented, orthomodular poset has been

central to the lattice approach to quantum mechanics. As stated before, to
arrive at a structure that has a Hilbert space representation, further assumptions

are needed. We will study the consequences of assuming that there exists a

symmetry group connected to the state of a set of experiments.

6. SYMMETRY AND PERMISSIBILITY

We assume that each sample space -a is a locally compact topological

space, and let - 5 {(a, x): a P !, x P -a} be the collection of all sample

spaces. If - is given the topology composed of unions of sets of the form
(a, Va), where Va is open in -a , then - will also be locally compact.

Now let G be a group of transformations on -. For single experiments

it is known (Helland, 1998, and references there) thatÐ if simple consistency

properties are satisfiedÐ such a group may both simplify the statistical analy-

sis and allow a considerable strengthening of conclusions. We will here

discuss consequences for sets of potential experiments of the assumption of
the existence of a symmetry group.

The groups connected to single experiments may be looked upon as

subgroups of G: Let Ga 5 {g P G: ga 5 a}. Then, by a slight misuse of

notation, Ga will be considered to be a group of transformations of -a.

Now introduce models, i.e., look at the whole specification of the

experiment %a 5 (-a , ^a , {Pa
u ; u P U a}). As is common in statistical models

under symmetry, it will be assumed that ^a is closed under the action of the

elements of Ga , and that Ga is given a topology such that the mappings g ®
g 2 1, (g1, g2) ® g1g2, and (g, x) ® gx are continuous.

A group GÄ a of transformations of the parameter space U a is introduced

in the natural way by

Pa
gÄ a u (E ) 5 Pa

u (g
2 1
a E ) for E P ^a

A basic assumption is that the model is closed under the transformations gÅ a P
GÅ

a. Another assumption is that in each model the parameter can be identified:

Pa
u 8(E ) 5 Pa

u (E ) for all E P ^a implies u 8 5 u (3)

As earlier, it is assumed that all parameters u 5 u a in Q a are functions

of a single parameter f from some space F . This is the parameter characteriz-
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ing the state of the system, and it is natural to assume that all parameter

transformations are generated by transformations of f .

Assumption 3. There is a group GÅ
a of transformations on F such that

the elements gÄ a of GÄ a all have the form

gÄ a( u a( f )) 5 u a(gÅ a f ) (4)

The special parametric functions u ( ? ) 5 u a( ? ) that satisfy a relation of

the form (4) for some groups GÅ and GÅ
a played an important role in Helland

(1998), where they were called invariantly estimable functions. They will be

even more important here, and they will be referred to several times, also
when no estimation is involved, so we will simply call these parametric

functions permissible . The following results summarize some of their main

properties:

Lemma 2. (a) For the group GÅ
a , the parametric function u a( ? ) is permissi-

ble, i.e., there is a set of transformations {gÅ a} such that (4) holds if and only
if for each pair ( f 8, f )

u a( f 8) 5 u a( f ) implies u a(gÅ f 8) 5 u a(gÅ f ) for all gÅ P GÅ . (5)

(b) The set of transformations gÄ a described by the relation (4) will
necessarily constitute a group, and this group is the homomorphic image of

the group GÅ
a: If gÅ ,gÅ 8 ® gÄ ,gÄ 8, then gÅ gÅ 8 ® gÄ gÄ 8 and gÅ 2 1 ® gÄ 2 1.

(c) Assume that u a( ? ) is permissible relative to GÅ
a as above, and assume

that in experiment %a we have that h ( ? ) is a permissible function of u a relative

to GÄ a. Then z ( ? ) defined by z ( f ) 5 h ( u a( f )) is permissible.

Proof. (a) The general implication (5) is equivalent to the requirement

that u a(gÅ f ) is a function of u a( f ).

(b) Straightforward verification.

(c) We have z (gÅ f ) 5 h (gÅ a( u a( f ))) 5 gÄ a( h ( u a( f ))) 5 gÄ a( z ( f )) for some gÄ a.

Certain inconsistencies in Bayesian estimation theory are avoided if one
concentrates on permissible parametric functions. Under weak additional

assumptions on the loss function we also have that the best invariant estimator

will be equal to the Bayes estimator under noninformative prior for such

parameters (Helland, 1998).

Another homomorphi sm in the structure described above is ga ®
gÅ a(Ga ® GÅ

a). It follows that GÅ
a is the homomorphic image both of GÅ and

of Ga , which is a subgroup of G.

The following properties of permissible parametric functions are bor-

rowed from Helland (1998), but all points are easy to verify:

(i) The full parametric function f ® f is permissible.
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(ii) If h is invariant in the sense that h (gÅ f ) 5 h ( f ) for all gÅ P GÅ and

all f P F , then h is permissible. If u 5 u a( ? ) corresponding to an experiment

%a is of this type, then u is constant (on orbits of GÅ ).
(iii) If h ( f ) is permissible with range M and g is a 1±1 function from

M onto another space N, then z given by z ( f ) 5 g ( h ( f )) is permissible. This

is a special case of Lemma 2(c).

(iv) If { h i; i P I } is any set of permissible parametric functions, then

u given by u ( f ) 5 ( h i ( f ); i P I ) is permissible.

Note that the functions f ® P u ( f )(E ) are not necessarily permissible
even though the functions u are. This implication does hold, however, if the

parameter u ( ? ) is one-dimensional and P depends monotonically on it, since

then the relation between u and P will be 1±1.

7. GROUP REPRESENTATION RELATED TO THE
PARAMETER SPACE

One very important aspect of locally compact groups of transformations

is that one can define left- and right-invariant measures (Nachbin, 1965):

m (gÅ D) 5 m (D) and n (DgÅ ) 5 n (D), where gÅ P GÅ and D # GÅ . If F is also

locally compact, and if the action of GÅ on F satisfies a weak extra condition,
then right Haar measure can also be defined on F in a consistent way (Helland,

1998, and references there). It is argued in Helland (1998) that from many

points of view this right-invariant measure is the correct one to use as a prior

`distribution’ when GÅ expresses the symmetry of the problem and no other

information is present.

Linear representation of groups has played an increasing role in quantum
mechanical calculations in the last decades, and in fact much of the motivation

behind the recent development of group representation theory as a mathemati-

cal discipline has been taken from quantum theory. Nevertheless, when it

comes to the physical and mathematical foundation of quantum theory, little

use has been made of group representations. An exception is Bohr and Ulfbeck

(1995), where physical aspects are emphasized.
We will concentrate here on the group GÅ of transformations on the basic

parameter space F . Assume that F is endowed with a s -algebra with a

separability property (Dunford and Schwartz, 1958, p. 169) so that the space

* 5 L2( F , n ) of complex square-integrable functions on F is separable. We

take the measure n as right Haar measure.

The elements gÅ P GÅ generate unitary transformations on * by

U(gÅ ) f( f ) 5 f(gÅ 2 1 f ) (6)

Note that these transformations form a group which is the homomorphi c

image of the group GÅ . A major issue in group representation theory is to
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study invariant subspaces under such transformations, in particular to look

for irreducible invariant subspaces.

Now recall the permissible parametric functions u ( ? ) defined on the
same space F . There is a natural ordering of these functions: Say that u 8( ? ) d
u ( ? ) if u 8( ? ) is a function of u ( ? ), i.e., u 8( f ) 5 c ( u ( f )) for some c . In classes

of statistical models/experiments it may be of some interest to find minima

under this ordering for certain sets of permissible functions. We will see

below that equivalence classes of permissible functions are in one-to-one

correspondence with subspaces of * that are invariant under the group-
generated class of unitary transformations (6), and that the ordering above

corresponds to the natural ordering of subspaces. This may explain to a certain

extent why group representation theory is so important in quantum mechanics.

Theorem 2. (a) Consider a fixed permissible function u ( ? ). The set of

functions f of the form f( f ) 5 f0( u ( f )) constitutes a closed linear subspace

of * which is invariant under the transformations U(gÅ ).

(b) If u i is a permissible function and u 1 d u , then the subspace corres-
ponding to u 1 is contained in the subspace corresponding to u . Conversely,

if V1 corresponds to u 1, V to u , and V1 is a subspace of V, then u 1( ? ) d u ( ? ).
(c) Say that two permissible parametric functions u ( ? ) and u 8( ? ) are

equivalent if they are 1±1 functions of each other. Then the set of equivalence

classes of permissible functions is in 1±1 correspondence with the subset of

invariant subspaces of * described in (a).

Proof. (a) It is clear that the space is closed under linear combinations,
and also under infinite sums that converge in L2-norm, so the space is closed.

If f belongs to the subspace, then

U(gÅ )f( f ) 5 f(gÅ 2 1 f ) 5 f0(gÄ
2 1( u ( f )))

is also in the subspace.

(b) Obvious.

(c) From (b) the invariant subsets of equivalent permissible functions

must be contained in each other.

For the use of group representation in physics, see, for instance, Hamer-

mesh (1962); a reference to the more general theory is Barut and RaË czka
(1977).

In later developments we will need further properties of the Hilbert

space * and those closed subspaces V of * that are defined by permissible

parametric functions. Here is the kind of result that is needed.

Lemma 3. (a) Under weak regularity conditions the parameter group GÅ
a

of experiment %a will be locally compact and have a right Haar measure n a.
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Let f( ? ) be a given function on F . Then there is a unique (almost everywhere

with respect to n a) function fa( u ) such that for all functions c( ? ) of u we have

# c( u a( f ))f( f ) n (d f ) 5 # c( u )fa( u ) n a(d u ) (7)

(b) Let V1 , Va , *, where V1 corresponds to the permissible function
u 1( ? ) and Va to u a( ? ). Let f1 and fa be the corresponding functions defined in

(a). Then, for all c1( ? )

# c1( u 1)f1( u 1) n 1(d u 1) 5 # c1( u 1( u ))fa( u ) n a(d u ) (8)

(c) For all functions g on Q a we have

# ) f( f ) 2 fa( u a( f )) ) 2 n (d f ) # # ) f( f ) 2 g( u a( f )) ) 2 n (d f ) (9)

Equality holds here if and only if g( u ) 5 fa( u ) almost everywhere with respect

to the measure n a.

Proof. (a) We know that GÅ is locally compact, and that GÅ
a is the homo-

morphic image of GÅ . Assuming that the function describing the homomor-
phism is continuous, GÅ

a will inherit the topology from GÅ , and then be locally

compact. The measure f( f ) n (d f ) will be absolutely continuous with respect

to n a(d u ); let fa( u ) be the Radon-Nikodym derivative.

(b) This follows from well-known properties of Radon-Nikodym

derivatives.

(c) By using (7) on c( u ) 5 g( u ) 2 fa ( u ), we find

# ) f( f ) 2 g( u a( f )) ) 2 n (d f ) 2 # ) f( f ) 2 fa( u a( f )) ) 2 n (d f )

5 # ) g( u ) 2 fa( u ) ) 2 n a(d u )

Equations (7) and (9) show that the function fa ( u ( f )) may be regarded

as the projection of f( f ) on the space determined by the permissible function

u ( ? ), and (8) shows that this projection functions as it should under iteration.
This appears to be the start of a state vector approach to quantum mechanics

based on a Hilbert space representation of GÅ . We will come back to this

approach later, but first we will return to the lattice approach, which leads

to a (complementary) Hilbert space representation of propositions.
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8. LATTICE PROPERTY AND HILBERT SPACE

From Assumption 3 it is clear that the parameters u connected to each

single experiment are permissible functions of the basic (hyper-) parameter

f . An important observation was made in Lemma 2(c): Further parametric

functions that are permissible relative to this single experiment are also
permissible relative to f . Often it is natural to design subexperiments to

estimate such parameters.

The first part of the assumption below can be motivated as follows: If

a( ? ) is a function of a set of parameters and b( ? ) is an extension of a using

more parameters, then usually the values b will be smaller than the values

a for some parameter values, but in most cases there are also parameter
values for which b is larger than a.

We let the vector space representation of permissible parametric func-

tions from the previous section be understood.

Assumption 4. (a) The supremum of a set of propositions {3i}, if it

exists, will be some proposition 3 5 (a, E ) with probability Pa
u ( f )(E ) where

the parameter u determines a space (Theorem 2) contained in the space

spanned by those corresponding to the parameters u i in each 3i.
(b) Corresponding to every such parametric function u there is an experi-

ment %.

Our main aim in this section is to show that the supremum of any set

of propositions can be defined.

Theorem 3. Let {3i 5 (ai , Ei); i P I } be a set of propositions, partially

ordered under the ordering given in Definition 1. Let Assumptions 3 and 4

hold. Then the supremum 3 of this set exists, in the sense that 3i # 3 for

all i and 3i # 30, " i, implies 3 # 30.

Proof. Assume a set of propositions 3i 5 (ai , Ei) with probabilities

Pai
u i( f )(Ei). What we are after, is a proposition 3 5 (a, E ) such that

Pai
u i( f )(Ei) # Pa

u ( f ) (E ) (10)

for all i and for all f , and such that 3 is the minimal proposition satisfying
this. By Assumption 4(a) we can restrict our search to propositions 3 with

parametric function u associated with a definite linear space V, the one spanned

by the linear spaces of the parameters u i.

Now (10) for each f is equivalent to

supi P
ai
c i( u )(Ei) # Pa

u (E ) (11)

where c i ( u ( f )) 5 u i ( f ), which makes sense by the nesting of the linear

spaces and by Theorem 2 (b).



Quantum Mechanics from Symmetry and Statistical Modeling 1869

By Assumption 4(b) there exists at least one experiment with parameter

u . Pick one such experiment. Then we can choose the E which minimizes

the right-hand side of (11) under this constraint for all u ’ s. Propositions that
give the same solution are identified by earlier assumptions. It is then clear

that the supremum found is unique.

As a consequence of Theorems 1 and 3 we now have that, with the

assumptions made, the set of propositions, constructed in a natural way

from sets of potential experiments subject to symmetry conditions, form an
orthomodular, orthocomplemented lattice. This is the basic entity of the

quantum logic approach to quantum mechanics. We feel that most of the

assumptions made are relatively innocent; they may perhaps be improved

slightly in detail, but they have a more concrete interpretation than axioms

for quantum mechanics in most existing approaches.

The remaining conditions from Section 3, atomicity, covering property,
and separability, are more technical, and some of them have been controversial

in some of the quantum logic literature. From a statistical point of view it is

obvious that each sample space is the union of its atoms, but the corresponding

assumption is more problematic if events with the same probability for each

u are identified, as we have chosen to do here. We also have difficulties with
the covering properties in models where atoms are undefined. On the other

hand, with the identification of events, it is usually not problematic to assume

that unions of disjoint events in each sample space are at most countable,

and then by Assumption 2, the separability property follows.

A simple solution is to assume that all experiments are discrete, that is,

that each sample space -a is countable. Then all conditions are satisfied, and
by arguments in Piron (1976), Maeda and Maeda (1970), Varadarajan (1985),

and other places the ordinary Hilbert space model of quantum mechanics

follows.

Heuristically, continuous sample spaces may be approximated by discrete

sample spaces. In fact, the situation at this point may be seen as a reflection

of the situation in ordinary quantum mechanics, where it is well known that
precise treatment of continuous variables requires other concepts than the

ordinary Hilbert space approach, say based on C*-algebras. Note that our

own underlying framework with sets of models for experiments subject to

symmetry is conceptually simple in the continuous case, too.

From the discussion in Beltrametti and Cassinelli (1981) we deduce the

following result.

Theorem 4. In the case where all experiments %a are discrete, and the

assumptions above hold, there is a complex, separable Hilbert space *0 such

that (assuming that the dimension of *0 $ 3) each proposition 3 5 (a, E )
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can be associated uniquely with a projection operator P a,E in *0 in the

sense that

Pa
u ( f )(E ) 5 trace( r P a,E) (12)

where r 5 r ( f ) is a density operator, a nonnegative operator of trace 1.

Here we have combined the theorem on existence of the Hilbert space

with the famous Gleason theorem, which states that if the dimension of the

Hilbert space is 3 or larger, every probability distribution over propositions

can be computed in this way. Gleason’ s theorem is very cumbersome to prove
(Varadarajan, 1985). We will indicate later that the state vector representation

of Section 7 probably may be used to give a simpler proof of this result.

Corollary 1. The conclusion of Theorem 4 holds under only the Assump-

tions 1, 3, and 4.

Proof. As it stands, Theorem 4 is deduced using all Assumptions 1±4.

As remarked earlier, however, it is always possible to extend the set of

propositions so that Assumption 2 holds. This extended set of propositions

does not occur in the statement (12).

All that has been done up to now could also have been done for a simple

case of a distributive lattice. Then as in Theorem 4 we would still have been

given a Hilbert space, but this Hilbert space would have been trivial. Hence,
a further question to ask is if the quantum logic derived from sets of experi-

ments is nondistributive in general. In some sense this is obvious, since if it

were distributive, we would have an ordinary Boolean algebra, which by a

well-known theorem by Stone would imply that everything could be repre-

sented as one single experiment. Here is a simple example of nondistributivity.

More complicated examples can be constructed from this.

Example 1. Look at two experiments %a 5 (-, ^, {P u }) and %b 5
(=, &, {4c }). Let A, B P ^, A, B Þ -, but A ø B 5 -, and let C P &, C
Þ 0¤. Assume that the two experiments are unrelated in the sense that u and

c depend on the common parameter f in disjoint parts of its range F . Also

assume that P u (A) 5 P u (B) 5 4 c (C ) 5 0 in the areas where these are

independent of the parameters. Then (a, Ac) Ú (b, Cc) is some proposition

(e, D) whose probability for all f should dominate max(P u ( f )(A
c), Q c ( f )(C

c)).

But, from the assumptions made, this maximum must be 1 for all f . Hence
(a, Ac) Ú (b, Cc) 5 1, so (a, A) Ù (b, C ) 5 0. Similarly, (a, B) Ù (b, C ) 5
0, so ((a, A) Ù (b, C )) Ú ((a, B) Ù (b, C )) 5 0. On the other hand, ((a, A)

Ú (a, B)) Ù (b, C ) 5 (a, A ø B) Ù (b, C ) 5 1 Ù (b, C ) 5 (b, C ). So these

three events do not satisfy the distributive law.
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Finally, one can ask if the quantum logic derived from sets of potential

experiments is wide enough to cover everything that is of interest in quantum

mechanics. Of course, it is very ambitious to try to give an answer to such
a question, but it is an encouraging thought that virtually every attempt that

can be made to verify any theory on the quantum level has to be based on

experiments. Hence it seems very difficult to transcend beyond this frame.

(However, this argument perhaps does not hold for quantum cosmology.)

9. OBSERVABLES

In Section 7 we introduced a group representation of the transformation

group GÅ in the parameter space, and looked at some concrete interpretations

of that representation in Theorem 2. The Hilbert space of Theorem 4 can in

some sense be regarded as the corresponding representation of the sample

space group G. Even though the consequences of this latter representation
are discussed in all books in quantum mechanics, we will give some remarks

on it here.

Since we have assumed that all sample spaces -a are discrete (this is

not necessary for our basic model, but convenient for the Hilbert space

representation), we might as well assume that -a 5 {1, 2, . . .} for each a.
The s -algebra is then the obvious one, and there is a parametric class of

probabilities {P a
u ( f )(x); u P U a}, adding to 1 for each a. As elsewhere it is

assumed that the parameter in each experiment is a function of a state

parameter f P F . The most important assumptions that we have made, apart

from the assumption that the class of experiments should be rich enough, is

that pairwise orthogonality should imply total orthogonali ty in the sense of
(1) and that there exists a group structure on F with the consistency require-

ment u a(gÅ f ) 5 gÅ a( u a( f )) for some gÅ a. We will also assume here that GÅ is

transitive on F ; the case with several orbits corresponds to superselection

rules: Index the orbits with some parameter t . Then t is conserved during

all symmetry transformations. Using a reasonable theory of time development,

it can also be shown to be conserved over time. Physical variables with this
property might be charge, mass, or hypercharge. In the further discussion

there is nothing lost by keeping t fixed, which is the same as sticking to one

particular orbit, so that GÅ is transitive.

The simplest quantum mechanical interpretation of (12) is now that each

primitive event (a, x) can be represented in a fixed complex separable Hilbert

space *0 by a one-dimensional projection: For each a we may take a set of
orthonormal vectors {ea,x} so that the event (a, x) is represented by the

projection ea,x e ²
a,x. In concrete terms this means that according to Gleason’ s

theorem there exists a density operator r such that Pa
u ( f )(x) 5 e ²

a,x r ea,x. It is

not difficult to see that it is always possible to find one such r for each
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experiment; the strong part of this result is that the same r can be chosen

for all the experiments.

In each experiment one can of course introduce random variables in the
usual statistical sense: Y( ? ), Z( ? ), . . .are measurable functions on some -a ,

and the distributions of these are determined in the usual way from

{Pa
u ( f )(x)} above. Again, the main thing that is new in quantum theory is that

there is some connection between variables defined in different experiments,

and this connection may have rather large consequences. It may be natural,

since probabilities are summarized through projection operators, to associate
random variables originally defined in an experiment %a with operators, too:

If Y (x) 5 yx for x P Xa , then take

YÄ 5 o
x

yxe a,xe
²
a,x (13)

The implication from Gleason’ s theorem is then that in any state r the

expectation of Y will be

^ Y & 5 trace(YÄ r ) (14)

Again take r 5 ee ² for some unit vector e. Then an easy standard calculation

shows that the variance ^ (Y 2 ^ Y & )2 & of Y vanishes if and only if e is an

eigenvector of YÄ with some eigenvalue l . Well-known results from quantum

theory follow.
With a more general sample space, the random variable Y is a measurable

function from (-a , ^a)to the Borel sets @ on the real line, meaning that

Ea 5 Y 2 1(B) belongs to ^a whenever B P @. In quantum logic, an observable

is defined more generally as a measurable map from @ to the set of proposi-

tions {(a, Ea): a P !, Ea , P ^a}. This is a formal way of generalizing the

notion of random variables in such a way that it makes sense for several
experiments, a conceptual idea that may be of interest in ordinary statistics,

too. Some technical problems associated with this notion of observables are

discussed in Gudder (1978).

10. STATES

It is now time to leave the habit of only associating the concept of state

with fixed values of the hyperparameter f . Two fundamental observations

lead to this:
1. So far, nothing has been said about the state space F , except that

there should be defined a group GÅ on it. From that point of view, there is

nothing to prevent us from replacing F by a larger space F 8, constructed

such that each f is a function on F 8, in the earlier notation: f d f 8. Then
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little in what has been said is changed if each f is replaced by any parameter

value that is mapped upon f , or more generally, by a prior measure on these f 8.
2. Since the density operator r in (12) is a weighted average of pure

state density operators, it is reasonable to have the left-hand side also as a

measure over ª pure statesº in some sense expressed by f . It is this argument

that we now will try to make more precise.

Again, since in the derivation of (12) we assumed that each -a is discrete.

we might as well replace E by a singleton {x}. In Section 9 we used

P a,x 5 ea,x e ²
a,x but this is not needed here. We will assume that x is nontrivial

in the sense that P a
u a( f )(x) . 0 for at least one f .

If we now replace f by an average according to some prior probability

measure t r ( ? ) on F , the equation reads

# P a
u a( f )(x) t r (d f ) 5 trace( r P a,x) (15)

Look first at the case where r 5 ei e
²
i is a pure state. Then (15) is

# P a
u a( f )(x) t i (d f ) 5 e

²
i P a,xei (16)

Since it is clear from (15) and (16) that t r ( ? ) 5 * l (di) t i ( ? ) when r 5
* l (di) ei e

²
i , we may concentrate on (16).

Now turn to the arbitrariness in the choice of F as remarked in point

1 above. A natural requirement is that F should be chosen in some minimal

way, subject to the requirement that it should serve as a hyperparameter space
for all the experiments in question. In fact the concept of minimality can be

made completely precise we have the ordering d of parametric functions.

We will for simplicity assume that each t i is absolutely continuous with

respect to the right G-Haar measure n ( ? ) on F .

Theorem 5. (a) There is (under technical assumptions) a unique minimal

hyperparametric space F so that (16) holds for each a, x, and i.
(b) For each i such that (16) is positive for at least one (a, x) there is

a unique hyperparameter f i such that the measure t i is concentrated on f i. The

correspondence between the pure state vectors ei and these hyperparameters f i

is given by

P a
u a( f i)(x) 5 e

²
i P a,xei (17)

Proof. (a) Start with one F 8, and with respect to this hyperparameter

space consider the Hilbert space *8 5 L2 ( F 8, n 8) as discussed in Section

7. When t 8i ( ? ) is absolutely continuous with respect to Haar measure, the

left-hand side of (16) can be written
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# P a
u 8a( f 8) (x)f 8i ( f 8) n 8(d f 8) (18)

for some function f 8i . Using the projection defined in Lemma 3, each such

expression can be projected onto a space Va corresponding to the parametric
function u 8a. Take * as the minimal linear space spanned by {Va: a P !}.

We will assume regularity conditions [cf. Theorem 2(d)] such that *
corresponds to a unique (hyper-) parametric function f ( f 8). This means,

again using Lemma 3, that all primes can be removed from the expression

(18). When t 8i ( ? ) is not absolutely continuous, a limiting argument must

be used.
(b) Look at the left-hand side of equation (16) when F is minimal, and

fix i. Assume that t i ( ? ) cannot be chosen as Dirac measure. Then, by projecting

upon all the spaces corresponding to the u a( ? ), there is a nontrivial measure

left which does not concern any of the parameters, contradicting the assump-

tion that F is minimal. Thus t 8i ( ? ) has to be Dirac on some value f i. This

means that (17) holds.

The result of Theorem 5 establishes a connection between the two

Hilbert spaces of this paper, and is in some sense close to giving an
independent proof of Gleason’ s theorem. And it also gives a link to ordinary

statistical models.

Suppose that an ideal measurement has been done. This means that

some experiment %a has been performed, and this has been so accurate

that we afterward can assume that the corresponding parameter is exactly

determined: u a( f ) 5 u 0. From a statistical point of view it is clear that
such a measurement must have consequences for what is predicted in future

measurement, and hence also on the state.

Assume that the state before measurement is given by a density matrix

r , hence a prior measure t r ( ? ), so that the result x in experiment %a is given

by both sides of (15). After the measurement is done, the new stateÐ i.e.,

the new measureÐ should be restricted to F a 5 { f : u a( f ) 5 u 0}. By suitably
parametrizing F a (we can find a permissible parametrization since u a is

permissible) this again amounts to a projection in the sense of Lemma 3.

The well-known Gleason theorem solution emerges, namely to replace r by

p r p , normalized, where p projects on the set of state vectors corresponding

to those f for which u a( f ) 5 u 0.

In some early quantum mechanical literature, such results were com-
prehended as somewhat mysterious, as reflected in the term ª collapse of

the wave packet.º From a statistical point of view it is well known that

models must be changed when new information is obtained. Bayesian

statistics has put this way of thinking into a system, also for nonideal
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measurements. However, the idea is well known also in non-Bayesian

statistics.

11. MEASUREMENT THEORY: STATISTICAL INFERENCE
THEORY

The measurement theory of von Neumann (1955) has been criticized

by several authors, mainly because of difficulties with giving a precise

division between the microscopic system and the macroscopic measur-
ing device.

The statistical approach can offer a well-documented, well-understood,

and extremely well tested solution to the measurement problem: Suppose

that some specific experiment %a has been performed. Statistical inference

theory to estimate the parameter u of such an experiment is well developed

(see, for instance, Lehmann, 1983). A difficulty is that this does not usually
determine the state f . This may, however, be solved using an objective Bayes

approach; see below. In Section 4 the extreme set !0 of experiments was

defined. A reasonable conjecture is that under regularity conditions, when

an experiment belongs to !0, there is 1±1 correspondence between u and f .

This seems to be supported by observing the Hilbert space solution for
this case.

Malley and Hornstein (1993) discuss statistical inference specifically

for the quantum situation.

In the present context it is natural to make use of the symmetry

propert ies of the quantum situation, also in the inference phase. This was

done in a general setting in Helland (1998). We will only briefly recapitulate
one of the main results adapted to the quantum theory solution proposed

here.

Assume that to start with we have no information about the system,

so that the Haar prior n on F with respect to the basic group GÅ is used.

Then we perform an experiment %a with parametric function u ( f ). The

experiment results in the measurement of a random variable XÐ which is
taken as a point in the sample space, and can be multidimensional or even

more general. We assume that the group Ga on the sample space -a of the

experiment is known. For simplicity it is assumed that this group is transi-

tive, and also that GÅ is transitive on F (no superselection rules). In general

one can condition upon orbits. The probability density on the sample space

-a is known as a function of f ; for simplicity this is taken as a density
p f (x) with respect to the measure n a on -a generated by Haar measure

n 8a on Ga: that is, P a
u ( f )(E ) 5 * E p f (x) n a(dx) for all E.

The main question now is how shall f be estimated; i.e., one wants an

estimator f Ã(X ) which is as close as possible to f . To specify what we mean



1876 Helland

by closeness, we need to specify a loss function. Assume for simplicity that

f is a vector parameter (in some Rk), and that quadratic loss is used. Then

the solution is

f Ã(x) 5 # f p f (x) n (d f )

# p f (x) n (d f )

(19)

This solution is best in two different ways: It is the best equivariant (ª permissi-

bleº ) estimator, and it minimizes the Bayes loss, that is, the expected loss

with respect to the a posteriori distribution when the prior is Haar as above.

By consistency, u 5 u ( f ) must have a similar formula with p f (x) replaced
by q u (x), where p f (x) 5 q u ( f )(x). On the other hand, it seems reasonable, and

it is in fact optimal, to estimate any h ( f ) by the formula (19), where f under

the integral in the numerator is replaced by h ( f ). This may seem to give

two different formulas for u Ã(x), but the two formulas are equal by a straightfor-

ward use of Lemma 3. Note, however, that we do not have u Ã5 u ( f Ã); this
relation is only approximately satisfied when one has large amounts of data.

12. TIME EVOLUTION AND THE ROLE OF PLANCK’S
CONSTANT

So far the description has been static; we will now try briefly to take
time development into account. The point of departure is that we have defined

the state of the system as some parameter f in some space F . In practice

this state can develop with time in many different ways. A simple and

physically plausible assumption is that there is a continuous group K acting

on F such that f after time t changes to kt f , where kt P K.

In Section 7 we discussed a unitary representation of the symmetry
group GÅ of F on a Hilbert space *. Assume that one can find a unitary

representation of K also on *. Since K is a continuous group, a well-known

theorem by Stone implies that the representation then must be of the form

U(t) 5 eiAt

for some self-adjoint operator A, perhaps after rescaling time. As is demon-

strated in several books, taking A 5 2 H/ " here, where " is Planck’ s constant

and H is the Hamiltonian, leads to the SchroÈ dinger equation.
This is the first time that Planck’ s constant appears in this paper, a rather

significant observation. Everything that has been said on stochastical models

and most of what we have said about symmetry apply also to large-scale

problems. Planck’ s constant appears only when we meet the following fact,
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most recently commented on by Alfsen and Schultz (1998): Physical variables

play a dual role, as observables and as generators of transformation groups.

It is when observators are used as generators of groups that the proportionality
constant " occurs. One example is the Hamiltonian and the SchroÈ dinger

equation, another example is the translation group in some direction, say the

x axis, whose unitary representation is of the form exp (ipx / " ), with px being

the momentum in the x direction.

13. A LARGE-SCALE EXAMPLE

Most so-called paradoxes of quantum mechanics seem to disappear in

the statistical setting described here. Take the Einstein±Podolsky±Rosen

paradox, for example (in the form proposed by David Bohm): A composite

particle with spin 0 disintegrates into two single particles, whose spin compo-

nents in any direction then necessarily add to 0, hence are opposite. Sometimes
the fact that an observation of one particle implies the knowledge of the spin

component of the other particle in the same direction is taken as some action

at a distance. One point is that the observer of the first particle is free to

choose the direction in which he wants to measure. In the language of the

present paper this observer chooses one particular experiment. No paradox
appears when we have a statistical interpretation of experiments in mind.

The following macroscopic example seems to be fairly similar: An

organizer O sends two envelopes I and II to each of two persons A and B,

situated at different places. In envelope I he has the choice between a red

card or a black card: either red to A or black to B or the opposite. In envelope

II he has the choice between a card with the letter 1 or a card with the letter
2: either 1 to A and 2 to B or the opposite. Now O for simplicity chooses

to have probability 1/2 for red to A in envelope I, and he also chooses

probability 1/2 for 1 to A in envelope II. However, he may insist that there

should be some correlation g between the two envelopes to A, for instance,

defined by

P(red, 1) 5 1±4 (1 1 g )

where 2 1 # g # 1. Correlation at B, defined in the same way, will then

necessarily also be g .

The initial state of the system is then determined, since we know the

probability distribution of any experiment that A and B could choose to do.

To make completely concrete that some randomness is involved, one can
imagine several independent pairs (A1, B1), . . . , (An , Bn), all in the same

state, that is, under the same joint probability distribution generated by O.

Imagine now that the following happens: A is given the order that he

should open one and only one envelope. Once he has opened one envelope,
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the other one is destroyed (by some mechanism which is irrelevant here). A
is therefore given the choice between two noncompatible experiment, exactly

the situation discussed in this paper. If he opens envelope I and finds a red
card, he can make one set of predictions concerning the content of B ’ s two

envelopes; if he opens envelope II and sees the number 2, he can make

another set of predictions, etc. The situation is at least in some sense similar

to the EPR experiment. There is no action at a distance, only predictions

conditioned on different information.

As the experiment is described above, however, the well-known inequali-
ties of Bell (1966) will always be satisfied, since the knowledge posessed

by O can be regarded as a hidden variable. But the example can be extended

in several directions, thus making it more equal to its quantum mechanical

counterparts.

The following concept is of interest in general, and specifically in this

example: Pick a set !1 of potential experiments. Then the set {(a, u a): a P
!1} may be called permissible if there is a group G1 on !1 such that (i)

g1a P !1 whenever a P !1 and g1 P G1, and (ii) (g1a, u g1a (gÅ f )) is a

function of (a, u a( f )) for all choices of g1, gÅ . This is equivalent to permissibil-

ity of the parameter in a compound experiment, where f is augmented by

the ª parameterº a, and the group of this new f is given by {(g1, gÅ )}.
In the present example, the three transformations corresponding to

P u (r) ® P u (b) (envelope I), P u (1) ® P u (2) (envelope II), and I ® II (change

envolope) constitute such a structure. The smallest homomorphic image of

S4 (the permutation group of four elements) which supports this structure is

S3, which is noncommutative and has an interesting two-dimensional irreduc-

ible representation.
Several concepts of this paper may be illustrated on this simple example,

if necessary by using the structure just described. Alternatively, the example

could have been made more complicated to start with, so that each experiment

supported a group with a nontrivial irreducible representation. These (not

quite trivial) exerciseswill be left to the interested reader.

14. DISCUSSION

Throughout this paper we have stated some assumptions: in addition

there are several implicit assumptions of more technical/mathematical type.

Though most of these assumptions are rather plausible, we are not completely
sure that all of them will be satisfied in all details in a future hypothetical

theory. Their main function here has been to pave the way to ordinary quantum

mechanics from what is our basic framework: a set of models for experiments

with a common state space, subject to some symmetry group.
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Our conceptual framework works both for continuous and for discrete

variables, and, apart from the discussion of time evolution, there is nothing

much nonrelativistic about it. A very interestingÐ but probably not trivialÐ
question is therefore to what extent it can be developed further in a relativistic

setting, perhaps even with large symmetry groups of the kind that are natural

to think of in the contexts of general relativity.

Of some interest in this connection are the views expressed by Dirac

(1978): He wanted relativistic quantum mechanics to take another direction,

and explicitly mentioned group representations of the PoincareÂgroup as a

clue to this direction.

In the same paper, Dirac expressed the following opinion: ª One should

keep the need for a sound mathematical basis dominating one’ s search for a

new theory. Any physical or philosophical idea that one has must be adjusted

to the mathematics. Not the other way around.º

I strongly agree with Dirac that any fundamental physical theory should

have a sound mathematical basis. In fact, much of the motivation behind the

present paper has been to find just that. However, every mathematical theory

building must be based on a set of axioms. It may well be that the axioms

found by mathematicians using aesthetic or quasilogical criteria are among

the right ones to serve as a basis for a physical theory, but these criteria

alone often leave one with too much arbitrariness. In fact, and unfortunately,

much formalistic theory has been the result of only taking such points of

departure. To find the basis for a new theory, one must endeavor to look in

all directions, draw upon all sources whether they relate to common sense,

experience, mathematics, philosophy, or large-scale physics.

This implies extremely difficult requirements on the developer of theo-

ries, and intuitive reasoning and even imprecise arguments seem to be

unavoidable at intermediate stages of the development. Having said that,

however, at the final stage mathematical rigor should be imperative.

It can be inferred from the ideas of this paper that much of what has

been said about modeling in the microcosmos also can be transferred to the

macrocosmos. In fact, large-scale examples showing quantum mechanical

behavior have recently been demonstrated in the physical literature (Aerts,

1996). As indicated above, several examples of this type can be constructed.

Having stressed the similarities between models of quantum theory and

those of statistics in this paper, it should also of course be underlined that

there are basic differences. In statistics the parameters are always regarded

as unknown and subject to inference; in quantum physics the states/parameters

can often be regarded as known. Also, the rich set of symmetries that is

typical for all applications of quantum theory seldom find their counterpart,

at least not to a similar degree, in large-scale statistics.
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Nevertheless, even though it is not a main issue here, it should be

mentioned that some of the ideas behind this paper also seem to have impact

for issues discussed in ordinary statistical science. The question of how to
condition statistical models gives another meaning to the label `a’ in %a 5
(-a , ^a , {Pa

u ; u P Q a}) (Helland, 1995, and references there). The link

between this issue and quantum mechanics was suggested already by Barnd-

orff-Nielsen (1995).

In this paper, and in most statistical papers, a mathematical structure

like %a above is connected to a real, physical or otherwise, experiment. But
in addition, since {Pa

u } is included in the structure, it can be used to denote

different models for the same real experiment. This idea together with the

symmetry discussion of the present paper can in fact be used to discuss model

reduction in statistics. We hope to develop these ideas further elsewhere.
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